Course Outline

School / Portfolio:	Faculty of Science and Technology	
Course Title:	GEOMECHANICS	
Course ID:	MGGGC6102	
Credit Points:	15	
Prerequisite(s):	Nil	
Co-requisite(s):	Nil	
Exclusion(s):	Nil	
ASCED Code:	030911	

Program Level:

	AQF Level of Program						
	5	6	7	8	9	10	
Level							
Introductory							
Intermediate					~		
Advanced							

Learning Outcomes:

On completion of the course students will be able to:

Knowledge:

- **K1.** Describe the engineering properties and behaviour of soil and rocks.
- **K2.** Recall the principles of unsaturated soil mechanics and contrast saturated and unsaturated soil behaviours.

Skills:

- **S1.** Analyse stress and strain in geomaterials and interpret the outcome.
- **S2.** Solve numerical problems to calculate ground settlement.
- **S3.** Design shallow footings and earth retaining structures.

Application of knowledge and skills:

- A1. Assess the displacements and evaluate stability of structures.
- A2. Calculate hydraulic pressures and forces and discuss the stability of earth structures.
- A3. Interpret experimental results and use them in engineering designs.

Course Content:

Topics may include:

- Phase relationships.
- Concept of effective stress.
- Constitutive modelling.

Course Outline

MGGGC6102 GEOMECHANICS

- Stress and displacement in soil.
- Stress and displacement in rocks.
- Unsaturated soil behaviour.
- Seepage.
- Consolidation.
- Shear strength of soil.
- Shear strength of rocks.
- Earth pressure.
- Foundations.
- Design for dynamic loading.

Values and Graduate Attributes:

Values:

- V1. Developing the capacity to make independent judgement on the behaviour of geomaterials.
- **V2.** Supporting active learning by application of soil and rock mechanics to solve common problems related to geomechanics.

Learning Task and Assessment:

Learning Outcomes Assessed	Assessment Task	Assessment Type	Weighting
K1, K2, S1, S2, A1	Carry out an assessment on	Coursework â€" Essay (1500	25-35%
	phase relationships, effective	words) + numerical problems.	
	stress and constitutive		
	modelling.		
K1, K2, S3, A2	Carry out an assessment on	Coursework - Numerical	25-35%
	the seepage flow under a dam	problems.	
	and settlement in a soft soil		
	layer under a		
	structure.		
K1, K2, S1, S3, A3	For a given case, undertake a	Coursework - Design project.	35-45%
	design task of an earth		
	retaining structure.		

Adopted Reference Style:

Australian